Сайт
Лены
Даниловой

Информационный портал для заботливых родителей

Главная | Новости | Всё о раннем развитии | Кладовая | Мастерская | Здоровье | Мамины заботы | Полезные адреса | СсылкиФорум | Карта сайта | Почта

Магазин | Всё о детях до года | Всё о детях от 1 до 3 | Всё о детях от 3 до 5 | Всё о детях старше 5

 Всё о раннем развитии >> Математика >> Математика дошкольникам >> "Домашняя школа для дошкольников"
Ал. Звонкин, Из книги: Вадим Левин "Уроки для родителей"
 

В середине восьмидесятых в журнале «Знание — сила» появились две необычные публикации, одна из них на тему - информационная безопасность

, две - из семейного опыта дошкольной педагогики[1]. Автором публикаций был молодой математик, кандидат наук Саша Звонкин. Он назвал свои статьи заметками, показывая этим, по-видимому, что проведенное им педагогическое исследование не относится к области его основных профессиональных интересов. Сегодня, когда я готовлю к печати в этой книге «монолог гостя» Александра Звонкина, автор заметок преподает во Франции. Он давно получил должность профессора в университете города Бордо. «Заметки» его юности и уникальный педагогический эксперимент, которому они посвящены, вряд ли известны современным родителям (да и педагогам тоже!). Хочу восполнить эту несомненную потерю и предлагаю читателям статьи А. Звонкина в некотором сокращении и с моими комментариями. Я позволил себе также выделить курсивом некоторые фрагменты заметок и ввести в «монолог» подзаголовки.

"ИСТОРИЧЕСКАЯ  СПРАВКА":  С ЧЕГО ВСЁ НАЧАЛОСЬ?

Мы познакомились с сотрудником института новых технологий («ИНТ») Сашей Звонкиным вскоре после того, как его педагогические заметки были опублико­ваны в журнале «Знание — сила». Тогда же он рассказал мне, с чего начался его эксперимент.

Конечно, домашний кружок, открытый молодым папой ради сына, — это уже сам по себе поступок, достойный подражания и упоминания в «Уроках для родителей». Но Александр еще и описал свой уникальный педагогический эксперимент. Причем, описание это богато точными наблюдениями, ценными размышлениями, неожиданными и убедительными замечаниями. Впрочем, судите сами. Слово Александру Звонкину.

МАЛЫШИ И МАТЕМАТИКА, НЕПОХОЖАЯ НА МАТЕМАТИКУ

Что я могу предложить своему сыну взамен традиционного: «научить, объяснить, показать, повторить, закрепить?..»

Эти заметки не претендуют на обоснование некоей новой системы дошкольного обучения. Это просто литературно обработанные дневниковые записи, которые я вел несколько лет, когда занимался математикой со своим сыном-дошкольником и его сверстниками,

Как математик-профессионал я считаю, что в обыденных представлениях о том, чем и как заниматься с детьми дошкольного возраста, царит традиция, в общем-то, идущая от наших «взрослых», родительских представлений, а не от внутренних возможностей и, главное, потребностей детей.

[Подобное, к сожалению, происходит не только при обучении математике][2].

На вопрос «чем» традиция отвечает так: в основном арифметикой и еще чуть-чуть геометрией.

 [Из этого, конечно, не следует, что арифметикой и геометрией заниматься вредно. Всё зависит от того, как это делать. А «как» определяется тем, ради чего, зачем заниматься].

Что касается того, «как» основная идея выражается словами: научить, объяснить, показать, повторить, закрепить...

[А зачем, ради чего? Обычно на этот вопрос родители и воспитатели отвечают: «Чтобы ребенок пришел в школу подготовленным. Там ведь ему это придется учить». Придумано даже такое умное слово «пропедевтика»: опережающее (школьную программу) преподнесение знаний, умений и навыков. Идея простая: чем раньше начнем учить, тем легче будет учиться потом. Но ведь может случиться и очень часто случается, что «пропедевтика» оказывается для ребенка труднее, чем будущее школьное обучение. И научая малыша немногому, мы отбиваем охоту идти в школу.

По-видимому, чем бы мы ни занимались с дошкольником (арифметикой, алгеброй, геометрией, комбинаторикой или теорией множеств), делать это следует не для того, чтобы пораньше и побольше вложить в ребенка знаний. Идея «пораньше и побольше» представляется мне, как и Александру Звонкину, очень вредной.]

Эта, последняя идея настораживает больше всего. Когда я слышу, что в современную эпоху очень выросли требования к математической подготовке выпускников детского сада, мне, родителю, становится как-то не по себе — такой тоской веет от этих «возросших требований».

Родительский эксперимент: математический кружок в котором не учат арифметике

Но легко критиковать традиционные представления. А что я сам могу предложить своему сыну взамен? Есть ли иной путь? И я поставил что-то вроде многолетнего эксперимента: когда мой Дима дорос до четырех лет, я не утерпел и организовал самый настоящий математический кружок, в котором совершенно не учил... арифметике. Записи об этом «родительском эксперименте» я и представляю на суд читателя».

 [Мне кажется, что эксперимент Звонкина помогает ответить не только на частный вопрос, чему еще можно учить дошкольника, но и на более общий — для чего же имеет смысл учить до школы ? Предваряя эксперимент, можно предположить: чтобы удовлетворить любознательность малыша, чтобы дать ему необычный (интеллектуальный) материал для игры и общения со взрослыми и со сверстниками, чтобы развить у него интеллектуальные способности, «инструменты мышления». В частности, обучение счету скорее всего развивает у ребенка воображение, способность действовать с воображаемыми предметами как с реальными. Подтверждает ли эксперимент Звонкина это предположение? Добавляет ли что-либо к нему?]

Интеллектуальные задачи для двухлетних

Такие сценки каждый из нас наблюдал не раз. Мама прячется за штору, потом с улыбкой выглядывает и говорит: «Ку-ку». И снова прячется. А совсем еще крошечный малыш при каждом ее появлении хлопает в ладоши и радостно визжит. Оба совершенно счастливы. Обоим, конечно же, и в голову не приходит, что они занимаются математикой.

Я написал эту фразу не для того, чтобы шокировать читателя или подцепить его на удочку притянутого за уши парадокса. Я это всерьез. Если почитать труды психологов, можно узнать, что в возрасте до полутора лет основная интеллектуальная задача, которая стоит перед ребенком, заключается в том, чтобы открыть закон постоянства объектов. То есть что вещи не исчезают, когда мы перестаем их видеть, а остаются существовать там же, где были, — существовать без нас.

Оказывается, такой важный объект, как мама, исчезнув, все же продолжает быть где-то здесь и вскоре появляется из-за той же шторы.

Арифметика по-японски

Но вот ребенок подрос, и его начинают уже сознательно «обучать математике» — учат считать. Никто не спорит — уметь считать, конечно полезно. Однако что означает это умение?

Давайте встанем на место ребенка и попробуем сами учиться арифметике... но только по-японски! Итак, вот вам первые десять чисел: ити, ни, сан, си, го, року, сити, хати, ку, дзю. Интересно, сколько времени вам потребуется, чтобы хотя бы только выучить эту последовательность наизусть? Когда это наконец удастся, попробуйте считать в обратном направлении, от дзю до ити. Если же и это удается, давайте начнем вычислять. Отвечайте, же­лательно без запинки и по возможности не переводя, даже в уме, на русский язык: сколько будет к року прибавить сан? А от сити отнять го? А хати поделить на си? А теперь давайте решим задачу: мама купила на базаре ку яблок и дала по ни яблок каждому из си детей; сколько яблок у нее осталось?

(Все ответы тоже следует давать по-японски.) Если после месяца активных тренировок вы освоите всю эту нелегкую науку и научитесь беглому счету в пределах дзю, вас можно поздравить: у вас превосходная механическая память.

И, разумеется, все это очень мало связано с вашими интеллектуальными способностями. Содержательные, собственно математические трудности в счете тоже присутствуют. Но они чаще всего остаются где-то за кадром — невидимые, незаметные. И, может быть, это к лучшему. Иначе энтузиасты раннего обучения тут же бросились бы изо всех сил объяснять малышу то, чего он пока еще понять не может, желая поскорее втащить его за шиворот на верхнюю ступеньку лестницы. А он мог бы сам.

Легко ли ребенку отличить вилку от ложки? А квадрат от треугольника?

      Вторая тема, традиционно фигурирующая в дошкольной математике, — геометрия. Считается, что детям нужно сообщить некоторый набор сведений, касающихся геометрических фигур: что такое треугольник, квадрат, круг, угол, прямая, отрезок, а также научить простейшим приемам измерения. Но давайте вдумаемся: если ребенок легко отличает вилку от ложки, почему же ему трудно отличить квадрат от треугольника? Да ему и не трудно вовсе! В чем он действительно испы­тывает трудность, так это в уяснении логических взаимоотношений между понятиями, а также тех действий, которые можно с фигурами совершать. Я, например, встречал первоклассников, которые считали, что если квадрат нарисовать косо, то он перестанет быть квадратом и станет просто четырехугольником (рисунок 4.1). А вопрос о том, чего вообще больше — квадратов или четырехугольников, требует уже вовсе недюжинной логики.

Рис. 4.1.

 

Говоря короче, я поставил себе задачей не сообщать ребенку информацию, а дать ему материал для размышлений и наблюдений (Выделено мной. — В. Л.)

[«Не сообщать ребенку информацию, а дать ему материал для размышлений и наблюдений».

Эту фразу, по-моему, следует отнести к золотым правилам педагогики].

И если взглянуть на дело с этой точки зрения, то треугольники с квадратами тотчас же теряют право первородства: задачи про вилки и ложки ничуть не менее математичны, если в них есть над чем подумать. И еще — не потому ли дошкольная математика занимается числами и фигурами, что их изучает также и школьная математика? Не есть ли это дань традиции? Ведь мы можем очень мало содержательного сообщить малышам об этих объектах. Нельзя ли взглянуть на проблему шире?

Итак, я не утерпел и организовал самый настоящий математический кружок.

Занимались мы раз в неделю, примерно по полчаса. Участников кружка четверо: Дима, Женя, Петя и Андрюша. Дима — самый младший, а старшему из детей, Андрюше, скоро должно было исполниться пять. Вскоре я завел дневник, куда стал записывать все, что было на занятиях, — и свои успехи, и неудачи.

Но, как это часто бывает, наиболее отчетливо я помню наше первое занятие.

«Никого не больше»   

Мы рассаживаемся вокруг журнального столика. Я, конечно, волнуюсь. Для начала говорю детям, что мы будем заниматься математикой, и для поддержания авторитета добавляю, что математика — это самая интересная в мире наука. Тут же получаю вопрос: «А что такое наука?» Приходится объяснять: наука — это когда много думают. «А я думал, фокусы будут», — несколько разочарованно произносит Андрюша. Его дома предупредили, что дядя Саша будет с ними сегодня заниматься и будут фокусы. «Фокусы тоже будут», — говорю я и, сворачивая вступление, перехожу к делу.

Вот первая задача. Я кладу на стол восемь пуговиц. Не дожидаясь моих указаний, мальчики все вместе кидаются их считать — ведь для них «математика» и «считать» пока синонимы. Когда шум утих, я могу сформулировать собственно задачу: «А теперь положите на стол столько же монет». Теперь на столе оказывается еще восемь монет. Мы кладем монеты и пуговицы в два одинаковых ряда, друг напротив друга. «Чего больше, монет или пуговиц?» — спрашиваю я.

Дети смотрят на меня несколько недоуменно; им не сразу удается сформулировать ответ: «Никого не больше». — «Значит, поровну, — говорю я. — А теперь смотрите, что я сделаю».

[Стоит запомнить! Педагог Саша не делает замечания, не произносит назидательно: «Так по-русски не говорят. Нужно говорить так...» Вместо этого он «повторяет» правильное по содержанию, но стилистически неудачное детское утверждение. И при этом «между прочим» устраняет стилистическую ошибку, придавая высказыванию ребенка верную форму.

Замечания взрослого ребенок нередко воспринимает как упрек в непонятливости. Если такие замечания звучат часто или произносятся с раздражением, у малыша пропадает желание заниматься делом, которое предлагает ему взрослый. А нередко даже формируется страх перед учением, комплекс «я глупый» — очень распространенный школьный ком­плекс].

И я раздвигаю ряд монет так, чтобы он стал длиннее (рисунок 4. 2). «А теперь чего больше?» — «Монет, монет больше!» — хором кричат ребята.

Рис. 4.2.

 

Я предлагаю Пете сосчитать пуговицы. Хоть мы их уже считали четыре раза, Петя не удивляется моему заданию и подсчитывает количество пуговиц в пятый раз: «Восемь». Предлагаю Диме сосчитать монеты; Дима считает и говорит: «Тоже восемь». — «Тоже восемь? — подчеркиваю я голосом. — Значит, их поровну?» — «Нет, монет больше!» — решительно заявляют мальчики.

По правде говоря, я заранее знал, что ответ будет именно таким. Эта задача — только одна из бесчисленных серий задач, которые давал в своих экспериментах детям-испытуемым великий швейцарский психолог Жан Пиаже. В своих опытах он установил: маленькие дети не понимают того, что нам с вами кажется самоочевидным, — если несколько предметов как-нибудь переставить или переместить, то их количество от этого не изменится.

Итак, я знал заранее, что скажут дети. Знал, но почему-то не приготовил никакой разумной реакции на их ответ.

А как поступили бы вы, читатель? Что бы вы сказали детям?

Дети сдаются не так-то легко, но если насесть как следует, они перестанут опираться на собственный ум

 Самый распространенный прием, которым пользуются почти все взрослые, состоит в том, чтобы начать детям изо всех сил что-то втолковывать. «Ну как же так! — с наигранным удивлением говорит взрослый. — Откуда же их могло стать больше? Ведь мы же никаких новых монет не добавляли! Ведь мы их только раздвинули — и все. Ведь раньше же их было поровну — вы же сами говорили! Значит, их никак не могло стать больше. Конечно же (выделяем го­лосом), монет и пуговиц осталось поровну!»

Всё это, на мой взгляд, никуда не годится. Во-первых, не надейтесь, что ваша логика в чем-либо убедит ребенка: логические рассуждения не кажутся убедительными тому, кто еще не умеет логически мыслить. Убедительной является только интонация вашего голоса. А она покажет ребенку лишь то, что он опять оказался не на высоте и что-то сделал не так. Дети сдаются не так-то легко, у них здоровый дух. Но если насесть как следует, можно добиться того, что они перестанут опираться на собственный ум, а будут пытаться угадать, чего желает от них взрослый.

[Обратите внимание на эту опасность! Замечательные природные свойства ребенка: любопытство и любознательность, — могут пробудить самостоятельность детского мышления. Но могут породить у малыша готовность уга­дывать и говорить то, что хотят услышать взрослые:

К сожалению, традиционное домашнее, детсадовское и школьное образование направлено обычно на то, чтобы «объяснить» (а точнее — внушить) ребенку, как нужно говорить «правильно», как принято говорить].

Взрослые вообще предъявляют детям множество необъяснимых требований: почему-то нельзя рисовать на стене; почему-то надо идти ложиться спать, когда не хочется; почему-то, нельзя спрашивать: «А когда этот дядя уйдет?» Вот и сейчас происходит что-то аналогичное: хотя я вижу, что монет больше, чем пуговиц, но почему-то полагается отвечать, что их поровну.

Так что же все-таки делать?

Можно высказать и свою точку зрения, но очень осторожно и ненавязчиво

Ну, прежде всего, можно обменяться мнениями: «А ты, Женя, как думаешь? А ты, Петя?  А почему? А на сколько монет больше?» Наравне с остальными можно высказать и свою точку зрения, но очень осторожно и ненавязчиво, снабдив всяческими оговорками типа «мне кажется» и «может быть». То есть весь свой авторитет взрослого употребить не на то, чтобы закрепить за этим авторитетом абсолютную власть единственно правильного суждения, а на то, чтобы убедить ребенка в важности и ценности его собственных поисков и усилий (Курсив мой. —В. Л.)

[Это суждение Александра Звонкина звучит для меня как еще одно золотое правило педагогики]

Но еще интереснее натолкнуть его на противоречия в собственной точке зрения.

[Очень рекомендую родителям почаще использовать в беседах с детьми эту плодотворную педагогическую подсказку].

«А сколько монет надо забрать, чтобы снова стало поровну?» — «Две монеты надо забрать». Забираем две монеты; считаем: пуговиц восемь, а монет шесть. «А теперь чего больше?» — «Теперь поровну». Очень хорошо. Я снова раздвигаю монеты пошире и задаю тот же вопрос. Теперь уже оказывается, что шесть монет — это больше, чем восемь пуговиц. «А почему их стало больше?» — «Потому, что вы их раздвинули». Мы опять отбираем две монеты, потом еще раз. Наконец картинка приобретает вот такой вид (рисунок 4. 3). В этот момент вдруг завязывается яростный спор. Одни мальчики по-прежнему считают, что больше монет, другие вдруг «увидели», что больше пуговиц. Пожалуй, самое время прерваться и перейти к другой задаче; пусть дальше думают сами.

Рис. 4.3.

 

От скороспелых знании пользы ровно столько же, сколько от преждевременных родов

Все эти мысли и идеи пришли ко мне далеко не сразу, так что в своем рассказе я поневоле забежал вперед — и в будущие свои размышления, и в будущие занятия. Эта задача еще многократно возникала у нас в разных обличьях. Было у нас, например, две армии, которые никак не могли победить друг друга, потому что у них было поровну солдат. Тогда одна из них раздвинулась солдат у нее стало больше, и она начала побеждать. Уви­дев это, вторая армия раздвинулась еще шире и т. д. (Закончить историю можно в соответствии с собственной фантазией.) Еще был Буратино, которого Лиса Алиса и Кот Базилио пытались обмануть, раздвигая пять золотых монет и утверждая, что их стало больше.

Я научился не ждать легких побед. Все равно раньше чем через два-три года дети не усвоят закон сохранения количества предметов, как бы вы их ни учили. Да самое главное, это вовсе и не нужно! Я уверен: от этих скороспелых знаний пользы ровно столько же, сколько от преждевременных родов. Всему свое время, и не следует опережать события, в том числе и в области воспитания интеллекта. (Эта точка зрения высказана здесь в несколько демагогической форме лишь из-за недостатка места. Я готов аргументировать ее, опираясь и на мой личный опыт, и на авторитет наиболее проницательных педагогов и ученых, и на данные психологических экспериментов.) Но, повторяю, все эти мысли были потом. А тогда, на первом занятии, я был рад, что какое-то интуитивное озарение удержало меня от «объяснений», и я просто перешел к следующей задаче.

Пусть дальше  думают сами

На столе шесть спичек. Складываю из них различные фигурки и прошу ребят по очереди сосчитать, сколько здесь спичек. Каждый раз их оказывается шесть штук... Нет, я слишком увлекся схоластическими рассуждениями и стал писать по-канцелярски. Давайте вернемся в живую детскую аудиторию, давайте увидим, как это происходит в жизни.

Каждый новый результат подсчета встречается настоящим взрывом восторга и хохота. Вот уже Андрюша и Женя кричат, что всегда получится шесть. Вот уже Дима довольно невежливо рвет у меня из рук спички, чтобы самому сложить какую-то вычурную фигурку, а Петя, напротив, очень вежливо спрашивает, не могу ли я ему дать еще спичек. Еще чуть-чуть — и их веселье перерастает в неуправляемое детское буйство.

[Очень важно расковать, раскрепостить детей, чтобы они ощутили свои занятия непринудительными, добровольными, доставляющими радость. Без этого не возникнет творчества, самостоятельности. Но не менее важно (и еще труднее) уследить, чтобы раскрепощенность не переросла «в неуправляемое детское буйство». В состоянии «буйства» (как и в состоянии закрепощенности, скованности) дети не способны к плодотворным, созидательным действиям.

(Такие занятия с детьми требуют терпения, внимания к ребенку, умения проникать в его логику, в его восприятие мира, знания предмета <в данном случае — математики>, педагогической изобретательности. Из всего этого только знание предмета можно «позаимствовать» у методиста. Остальное — терпение и внимание к ребенку — должно быть своё, идущее от любви и уважения к малышу, от родитель­ской культуры и интеллектуальной активности)].

Надо их как-то удержать и внимательно выслушать Андрюшу с Женей («Почему вы так думаете?»), и к тому же не упускать из виду новые повороты мысли: ведь тут как раз Дима сложил трехмерную фигурку — колодец. Я привлекаю к ней всеобщее внимание. На этот раз даже Андрюша с Женей не так уже уверены, что снова получится шесть. Считать спички очень трудно — колодец все время разваливается. Наконец у Димы получается семь! Все в легком недоумении, но особенно сильного удивления никто не проявляет: семь так семь, хоть и немного странновато. Ну что ж, моя педагогическая задача состоит не в том, чтобы сообщать детям окончательно установленные истины, а в том, чтобы разбудить их любознательность. Если кто-нибудь из мальчиков через несколько дней (или месяцев) вдруг по собственной инициативе сложит спички колодцем и пересчитает их — просто потому, что ему стало интересно, потому что захотелось узнать, как же все-таки на самом деле, — тогда я буду считать, что моя педагогика достигла своего апофеоза: ведь это маленькое самостоятельное исследование!

Если же этого не случится, то, будем надеяться, про­изойдет в другой раз, с другой задачей. (В будущем я имел многочисленные подтверждения, что так оно и бывало неоднократно.) Так или иначе, я ограничиваюсь лишь замечаниями типа «как интересно!» и «замечательно!» — в надежде, что эта ситуация покрепче застрянет у них в памяти.

Детская память. Какая это удивительная вещь! Не могу удержаться, чтобы не вставить здесь одну историю из более позднего времени.

Являются ли папы и дедушки мужчинами, а мужчины – людьми?

   Перед нами лежали на столе три фигурки из картона (рисунок 4. 4). Мы детально и обстоятельно обсуждаем их все вместе и по отдельности. У всех фигурок — четыре угла. Значит, каждую из них мы можем назвать четырехугольником. Итого: у нас есть три четырехугольника. При этом два из них отличаются тем, что у них все углы прямые. За это их называют прямоугольниками. Один из двух прямоугольников особый: у него стороны одинакового размера. Его называют квадратом. У квадрата как бы три имени: его можно назвать и квадратом, и прямоугольником, и четырехугольником — и все будет правильно.

Рис 4. 4.

Моя информация встречается не без сопротивления. Дети упорно стремятся мыслить в понятиях непересекающихся классов. А характер их объяснений внушает подозрение в том, что они еще не осознали по-настоящему великий за­кон «целое больше своей части». Десять минут назад они спорили о том, являются ли папы и дедушки мужчинами, а мужчины — людьми. Сейчас они никак не соглашаются называть квадрат прямоугольником: уж или одно, или другое. Я провожу настоящую агиткампанию за равноправие квадрата среди всех прямоугольников. Постепенно моя про­паганда начинает действовать. Мы еще раз подводим итог: сколько у нас квадратов? — Один. — А прямоугольников? — Два. — А четырехугольников? — Три.

Казалось бы, все хорошо. И я задаю последний вопрос, помните, тот, из начала статьи: «А чего вообще на свете больше — квадратов или четырехугольников?» — «Квадратов!» — дружно и без тени сомнения отвечают дети. «Потому что их легче вырезать», — объясняет Дима. «Потому что их много в домах, на крыше, на трубе», — объясняет Женя.

Вопросы важнее ответов

Такова завязка этой истории. А развязка произошла через полтора года, без всякой подготовки и даже без всякого внешнего повода. Летом на прогулке в лесу Дима неожиданно сказал мне: «Папа, помнишь, ты давал нам задачу про квадраты и четырехугольники — чего больше. Так, мне кажется, мы тогда тебе непра­вильно ответили. На самом деле больше четырехугольников». И дальше довольно толково объяснил, почему. С тех пор я исповедую принцип: вопросы важнее ответов.

Почему дети,  которых ничему не учат, все же продвигаются вперед?

Психологи проводили и продолжают проводить множество экспериментов, пытаясь научить детей некоторым первоначальным математическим закономерностям. Например, делают так. Сначала группу ребят проверяют, понимают ли они такую простую вещь: если кусок пластилина помять, раскатать и вообще придать ему другую форму, то количество пластилина от этого не изменится. Тех, кто этого не понимает, делят на две части. Одну оставляют «свободной» — это так называемая контрольная группа. А другую начинают обучать закону сохранения количества вещества: показывают, объясняют, взвешивают, сравнивают. Недели через две опять проверяют участников обеих групп, смотрят, кто чему научился. Чаще всего в результате оказывается, что прогресс в обеих группах весьма незначительный и при этом совершенно одинаковый. Обычно психологи недоумевают: почему же дети, которых так старательно обучали, так ничему и не научились?

Я, читая отчеты об этих экспериментах, задал себе противоположный вопрос: почему дети, которых ничему не учили (контрольная группа), тоже чуть-чуть продвинулись вперед? Теперь, после нескольких лет занятий с малышами, могу предложить свою гипотезу: потому что им тоже задавали вопросы.

Как же поспеть одному на всех?

Однако вернемся на наше занятие. Следующая задача — еще одна вариация на ту же тему сохранения количества предметов. Те самые шесть спичек, которые еще остались на столе после предыдущей задачи, раскладываются в рядок. Я прошу к каждой спичке положить пуговицу (рисунок 4. 5).

Рис.4.5.

Стандартный вопрос: «Чего больше — спичек или пуговиц?» — «Поровну». — «Значит, пуговиц столько же, сколько спичек», — резюмирую я.

Забираю все пуговицы в кулак и прошу сказать, сколько у меня в кулаке спрятано пуговиц.

Характерно, что никто не делает ни малейшей попыт­ки подсчитать спички. Да и зачем, в самом деле? Ведь спрашивают про пуговицы — значит, и считать нужно пуговицы. Дима как человек со мной на самой близкой ноге пытается разжать мой кулак, другие удивленно спрашивают: «Как же мы можем их сосчитать?» Я смеюсь: «Сосчитать, конечно, нельзя — пуговицы спрятаны. Но попробуйте как-нибудь угадать».

Тогда на меня обрушивается настоящий шквал отга­док, чаще всего ни на чем не основанных.

ЖЕНЯ Каждый кричит что-то свое; при этом один лишь Женя кричит правильный ответ. Я пытаюсь его выслушать, спросить, почему. Но он ретируется. Жене вообще часто мешает робость. Пока все кричат хором, перебивая друг друга, он, пожалуй, чаще других кричит правильный ответ. Но стоит всех утихомирить и обратиться лично к нему, как он смущается и уходит в себя.

АНДРЮША С Андрюшей — другая проблема. Он маль­чик очень целеустремленный, и на наших занятиях ему явно не хватает мотивации. Когда я в следу­ющий раз предложил ту же задачу в другой аранжировке — уже были не пуговицы со спичками, а солдаты с ружьями, потом они ушли, ружья остались, и теперь раз­ведчику нужно узнать, сколько было солдат, — вот тогда он первым догадался, что можно сосчитать ружья. И еще он любит игры, в которых кто-то должен выйти победителем. Но у меня не всегда хватает фантазии представить задачу в подходящей форме. Тем более, что другие этого вовсе не требуют.

ДИМА И ПЕТЯ Дима, например, вообще не любит решать чужие задачи, а любит придумывать свои. С трудом я подобрал к нему ключик — стал говорить примерно так: «Придумай задачу, в которой было бы...» - и дальше излагаю свое условие. К тому же решения его часто отличаются какой-то странной вычурностью (особенно это будет видно в следующей задаче); его довольно трудно ввести в колею здравого смысла. И с Петей тоже, конечно свои сложности.

ДИРИЖЕР ИЛИ ЖОНГЛЕР Как же мне поспеть-то одному на всех? Боже мой, у меня всего четыре ученика, и я не могу обеспечить индивидуальный подход! Что же может сделать учитель, у которого сорок человек в классе?.. Учителя часто любят сравнивать с дирижером. Я сам себе кажусь похожим скорее на жонглера, у которого вот-вот все рассыплется по арене. Так и сейчас, пока я пытаюсь беседовать с Женей — что да почему, Дима уже вытащил карточку для следующего задания («Четвер­тый — лишний») и спрашивает: «Папа, а это что, следующая задача?» Остальные двое уже рвут у него карточки из рук и безжалостно мнут их при этом, не щадя вечернего родительского труда. Женя уже тоже косится в их сторо­ну. Я разжимаю кулак, мы бегло проверяем, сколько пуговиц, и переходим к следующей задаче.

Услышать от ребенка правильное объяснение важнее, чем получить от него правильный ответ

Правила игры «Четвертый — лишний» общеизвестны. Детям дают четыре карточ­ки, на которых изображены или такие фигуры, как на рисунке 4. 6, или нарисованы, например заяц, ежик, белка и чемодан. Нужно сказать, какой из этих рисунков лишний.

Забавно наблюдать, как дети почти всегда дают правильный ответ, хотя далеко не всегда могут его объяснить. «Лишний — чемодан». — «Почему?» — «Потому что он не заяц, не ежик и не белка». — «Ах, вот как! А по-моему, лишний заяц. Потому что он не ежик, не белка и не чемодан!» Мальчики смотрят на меня в недоумении и заявляют настойчиво: «Нет, лишний — чемодан!»

Я пытаюсь узнать, нельзя ли все три нелишних предмета — зайца, ежика и белку — назвать одним общим словом. Наконец Петя, который по словарному запасу опережает остальных, первый находит нужное слово — «животные». И в дальнейшем он часто выручал нас в этой ситуации.

Рис 4. 6.

 

Лишние выстраиваются в очередь

Между прочим, я даю также и задачи с неоднозначным ответом. Например: воробей, пчела, улитка и самолет. Можно лиш­ним считать самолет (неживой), а можно улитку (не уме­ет летать).

В таких задачах я по очереди сам «назначал» лишних, а мальчики должны были давать объяснения. Так я пытался их убедить, что правильное объяснение важнее, чем правильный ответ, — прообраз общематематической идеи о необходимости не только делать правильные утверждения, но и эту правильность доказывать.

Схема «четвертый — лишний» и ее разновидности очень удобны для того, чтобы учить детей угадывать закономерности (эта грань математического мышления забывается школьной педагогикой). Иногда удобнее брать восемь картинок, которые должны разделиться по выделенным признакам на две равные группы. Именно такой схемой пользовался М. М. Бонгард в своей знаменитой книге «Проблемы узнавания». И уж совсем трудные логические задачи получаются с пересекающимися классами.

Например, пять картинок нужно разбить на две рав­ные группы, по три картинки в каждой; при этом одна из картинок общая — она принадлежит обеим группам. Вот например: мяч, автомобильная шина, резиновые сапоги, пальто, шапка. Здесь три предмета из резины (мяч, шина, сапоги) и три предмета одежды (сапоги, пальто, шапка), общий элемент — сапоги.

[Когда мы впервые встретились с Сашей Звонкиньш, я рассказал ему о том, как мы с моими литстудийцами игра­ем в подобную игру на лексическом материале. Группу из семи слов, заранее подобранных мной, студийцы пробуют разделить на две группы по четыре слова в каждой: Клюшка, дорога, гараж, хоккеист, ворота, матч, автомобиль; или Книга, тетрадь, осень, дерево, буква, лист, ветка.

Ключик к решению (найти слово-омоним, разные значения которого вписываются в разные ряды) быстро обнаруживают даже дошкольники. И весело выстраивают семерки в две шеренги по четыре слова в каждой: Клюшка-хоккеист-матч-ворота и дорога-гараж-автомобиль-ворота; Книга-тетрадь-буква-лист и осень-дерево-ветка-лист.

Любят эту игру и подростки, и взрослые. А придумывать такие задачи с детьми — редкое удовольствие].

Отдельный вопрос: как физически поделить пять картинок на две группы по три — не рвать же одну карточку пополам.

Мы пользовались стандартным приемом: двумя веревочными кругами, в пересечении которых помещали общий предмет.

Всегда ли мыслить нестандартно означает мыслить творчески?

Дима все время представлял собой про­блему. «Это хоть и дядя, но похож на тетю», — говорил он про старика с огромной бородой и помешал его в общество женщин. Про автомобильную шину он долго доказывал нам всем, что это тоже одежда, так как ее можно носить на поясе. Когда же никто с ним не согласился, он сказал: «Все равно это одежда, потому что ее надевают на автомобиль».

Кто-нибудь скажет: вот, мальчик умеет мыслить творчески, нестандартно. Насчет «нестандартно» согласен, но вот творчески... Человек по-настоящему творческий умеет предложить неожиданное, нестандартное решение и при этом остаться в рамках задачи. У Димы пока присутствует только первый компонент, а вот остаться в рамках задачи или хотя бы вблизи от них он не умеет. Надо как-то суметь, не подавив одно, развить другое. А как этого добиться, я не знаю.

Детям нужно полноценное интеллектуально-эстетическое удовольствие

Наша следующая (и последняя на этот раз) задача — из области геометрии. Я извлекаю цветную детскую мозаику, купленную в магазине «Лейпциг» (увы, в одном экземпляре: в момент покупки я еще не помышлял о кружке).

Мозаика представляет собой прямоугольное поле с отверстиями. В них вставляются одинаковые по форме фишечки пяти разных цветов (рисунок 4. 7), цвет фишек очень яркий, насыщенный, приятный для глаз.

Рис. 4.7.

 

Наша задача - про симметрию. Сначала я выкладываю ось — одноцветную вертикальную линию, проходящую посередине поля. Я называю эту линию «зеркалом»; в это зеркало сейчас будут смотреться разные фигурки. Я строю с одной стороны от оси разнообразные небольшие фигурки, а мальчики должны построить симметричные им фигурки с другой стороны. Я варьирую все, что можно — цвет, размер, расположение фигур (на следующих занятиях будет меняться также и расположение оси: сначала она станет горизонтальной, затем пойдет по диагонали). С помощью настоящего зеркала мы проверяем наши решения: оказывается ли за зеркалом то же самое, что мы видим в зеркале? Мальчики справляются с задачей на удивление легко, почти не допускают ошибок. Не могу понять, по­чему эта тема (осевая симметрия) вызывает трудности в шестом классе! Мы впоследствии посвятили ей много занятий. Симметрия в самом деле очень богатая тема.

Мы рассматривали картинки с симметричными узорами из книг по популярной математике. Мы рисовали симметричные фигуры разноцветными фломастерами на клетчатой бумаге; делали симметричные кляксы, складывая лист бумаги пополам; вырезали новогодние снежинки; находили ошибки в симметричных рисунках, в которых были специально сделаны кое-где нарушения, отклонения от точной симметрии; среди восьми карточек находили четыре симметричные и четыре несимметричные фигуры; у одной фигуры находили все возможные оси симметрии. Другие виды перемещений — центральная симметрия, поворот, параллельный перенос — оказыва­ются для детей несколько более сложными, а вот осевая симметрия буквально идет «на ура».

А мозаика стала вскоре моим любимейшим инструментом. Это не игра, а настоящий клад всевозможных задач по геометрии, комбинаторике, логике, угадыванию закономерностей. А однажды она мне преподала один незабываемый урок на тему о том, что для детей важнее. Дело было так. Мальчики с удовольствием ходили на занятия, а иногда даже в ответ на мои слова «урок окончен» просили позаниматься еще. Я, конечно, гордился собой, пока вдруг не заметил, что их просьбы продолжить занятие следуют только тогда, когда мы занимаемся с мозаикой.

Я решил проверить свою догадку. Следующее занятие было без мозаики. Так оно и есть: говорю «урок окончен» — дети спокойно встают и расходятся.

Меня охватили глубочайшие сомнения. Мозаика в самом деле очень красива, нет ничего удивительного в том, что ребятам нравится с нею играть. А моя математика, думал я, здесь ни при чем; я ее протаскиваю как обузу, как никому не нужный довесок, как нагрузку к интересной игрушке! И вот в следующий раз я устраиваю решаю­щую проверку. Мы опять занимаемся с мозаикой; опять мальчики не хотят заканчивать занятие. И тогда я гово­рю: «Нет, давайте мы урок все-таки закончим, а с мозаи­кой я вам разрешаю поиграть просто так». В ответ следует единодушный вопль возмущения, и Петя резюмирует общую точку зрения в решительных словах: «Э, не-ет! Мы хотим задачу!!» Вот так я понял, где лежит истина.

Детям нужно полноценное интеллектуально-эстетическое удовольствие. Если одна из двух половин отсутствует, полноценность теряется, а с ней и ощущение праздника.

Новогодняя елка без игрушек имеет в глазах детей так же мало притягательности, как игрушки без елки. Только когда они соединяются вместе, наступает праздник. Я надеюсь, что в будущем, через годы, когда мои ребята будут заниматься более абстрактной, «умственной» математикой, они будут получать от этого больше удовольствия, чем их сверстники. Ведь возникающие у них в уме абстрактные образы и понятия будут где-то на дне сознания эмоционально сливаться, окрашиваться воспоминаниями о разноцветных радостях детства.

Вот и сейчас — мы уже прошли два круга, то есть каж­дый из ребят решил по две задачи на симметрию, пора бы уже кончать, но мальчики не унимаются, хотят еще. Мне кажется, что они уже устали. И я нахожу неожиданный выход: «Давайте вы будете задавать мне задачи, а я буду их решать». Дети в восторге! С новым пылом они строят фигурки, а я — им симметричные. Работаю старательно.

Ошибки как педагогический инструмент

Вдруг в голову приходит новая идея: я начинаю нарочно делать ошибки.

[Идея использования преднамеренных ошибок прочно вошла в теорию и практику развивающего образования (система Д. Б. Эльконина—В. В. Давыдова). Там такие ошибки получили название «ловушки»].

Петя первый это замечает; счастью детей нет конца. К мальчикам как будто пришло второе дыхание. Теперь они с горящими глазами, не отрываясь, следят за моей рукой, встречая каждую новую ошибку воинственными дикарскими кличами.

Но пора все же закругляться. Я отодвигаю мозаику, благодарю всех и объявляю занятие оконченным. «А когда же фокусы будут?» — вдруг вспоминает Андрюша. «Ну как же, Андрюша! Ведь ты сам и показывал фокусы! Пуговиц было не видно, они были спрятаны у меня в кулаке, а ты сумел их сосчитать». Сумел, правда, не он, а Женя, но Андрюша, видимо, об этом забыл, потому что выглядит вполне удовлетворенным.

[Очень интересное наблюдение, которое непременно нужно учитывать, занимаясь с дошкольниками и младшими школьниками: когда в группе малышей кто-нибудь справляется с  задачей, которую решали все вместе, каждый ребенок ощущает себя решившим задачу!]

Мы встаем. Я смотрю на часы: неужели прошло всего двадцать пять минут? Сейчас дети разойдутся, а я останусь приводить в порядок свои мысли, придумывать новые задачи, новые подходы, приемы. И еще — клеить, вырезать, раскрашивать. Одним словом, готовить то, что в педагогике зовется скучным словом «дидактический материал». Ведь до следующего занятия — всего одна неделя.



[1]  «Малыши и математика, непохожая на математику» и «Дети и С25» (1985, № 8 и 1986, № 2).

[2] Здесь и далее вставки в квадратных скобках - комментарии Вадима Левина.  

  

присылайте ваши материалы на эту тему
 
   
  
Copyright © Раннее развитие детей. Сайт Лены Даниловой
Публикация любых материалов сайта допустима только по согласованию с редакцией.

Главная | Новости | Всё о раннем развитии | Кладовая | Мастерская | Здоровье | Мамины заботы | Полезные адреса | СсылкиФорум | Карта сайта | Почта

Магазин | Всё о детях до года | Всё о детях от 1 до 3 | Всё о детях от 3 до 5 | Всё о детях старше 5